X42182

Z-Power series is designed for high current operation and high flux output applications.

Z-Power LED’s thermal management performance exceeds other power LED solutions. It incorporates state-of-the-art SMD design and Thermal emission material.

Z Power LED is ideal light sources for general illumination applications, custom designed solutions, automotive large LCD backlights.

Features
- Super high flux output and high luminance
- Designed for high current operation
- Low thermal resistance
- SMT solderability
- Lead free product
- RoHS compliant

Applications
- Mobile phone flash
- Automotive interior / Exterior lighting
- Automotive signal lighting
- Automotive forward lighting
- Torch
- Architectural lighting
- LCD TV / Monitor backlight
- Projector light source
- Traffic signals
- Task lighting
- Decorative / Pathway lighting
- Remote / Solar powered lighting
- Household appliances

*The appearance and specifications of the product may be changed for improvement without notice.
Full Code of Z-Power LED Series

Full code form: $X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 - X_7 \ X_8 - X_9 \ X_{10} \ X_{11} \ X_{12} \ X_{13}$

1. Part Number
 - X_1: Color
 - X_2: Z-Power LED series number
 - X_3: LENS type
 - X_4: Chip quantity (or Power Dissipation)
 - X_5: Package outline size
 - X_6: Type of PCB

2. Internal Number
 - X_7
 - X_8

3. Code Labeling
 - X_9: Luminous flux (or Radiant flux for royal blue)
 - $X_{10} \ X_{11} \ X_{12}$: Dominant wavelength (or x,y coordinates rank code)
 - X_{13}: Forward voltage

4. Sticker Diagram on Reel & Aluminum Vinyl Bag

For more information about binning and labeling, refer to the Application Note -1
Outline Dimension

1. Dome Type

Notes:
1. All dimensions are in millimeters. (tolerance: ±0.2)
2. Scale: none
3. Slug of package is connected to anode.

*The appearance and specifications of the product may be changed for improvement without notice.
Outline Dimension

2. PCB Type

Notes:
1. All dimensions are in millimeters. (tolerance: ±0.2)
2. Scale: none

*The appearance and specifications of the product may be changed for improvement without notice.
Characteristics for Z-Power LED

1. Pure White (W42182)

1-1 Electro-Optical characteristics at $I_F=350mA$, $T_A=25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Flux $^{[1]}$ T rank</td>
<td>Φ_V $^{[2]}$</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>U rank</td>
<td>Φ_V $^{[2]}$</td>
<td>91</td>
</tr>
<tr>
<td>Correlated Color Temperature $^{[3]}$</td>
<td>CCT</td>
<td>-</td>
<td>6300</td>
</tr>
<tr>
<td>CRI $^{[4]}$</td>
<td>R_a</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Forward Voltage $^{[4]}$</td>
<td>V_F</td>
<td>2.9</td>
<td>3.25</td>
</tr>
<tr>
<td>View Angle</td>
<td>2θ</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance $^{[5]}$</td>
<td>$R_{\theta J-B}$</td>
<td>8.5</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance $^{[6]}$</td>
<td>$R_{\theta J-C}$</td>
<td>6.9</td>
<td>-</td>
</tr>
</tbody>
</table>

1-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>1000 (@ $T_j = 90^\circ C$) $^{[7]}$</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1800 (@ 1KHz, 1/10 duty)</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_j</td>
<td>145(@ $I_F \leq 700mA$)</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 ~ +85</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 ~ +100</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>ESD Sensitivity $^{[8]}$</td>
<td>-</td>
<td>$\pm 10,000V$ HBM</td>
<td>-</td>
</tr>
</tbody>
</table>

*Notes:

[1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
[2] Φ_V is the total luminous flux output as measured with an integrated sphere.
[3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance.
[4] A tolerance of $\pm 0.06V$ on forward voltage measurements
[5], [6] $R_{\theta J-B}$ is measured with a SSC metal core pcb. ($25^\circ C \leq T_j \leq 110^\circ C$)

$R_{\theta J-C}$ is measured with only emitter. ($25^\circ C \leq T_j \leq 110^\circ C$)

Break voltage of Metal PCB is 6.5kVAC.
[7] I_F Max is guaranteed under the $T_j \leq 90^\circ C$.
[8] It is included the zener chip to protect the product from ESD.

-------------------------- Caution --------------------------

1. Please do not drive at rated current more than 5 sec. without proper heat sink.
Characteristics for Z-Power LED

2. Warm White (N42182)

2-1 Electro-Optical characteristics at $I_F=350mA$, $T_J=25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlated Color Temperature [3]</td>
<td>CCT</td>
<td>-</td>
<td>3000</td>
</tr>
<tr>
<td>CRI</td>
<td>R_a</td>
<td>-</td>
<td>93</td>
</tr>
<tr>
<td>Forward Voltage [4]</td>
<td>V_F</td>
<td>2.9</td>
<td>3.25</td>
</tr>
<tr>
<td>View Angle</td>
<td>2θ 1/2</td>
<td>124</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance [5]</td>
<td>$R_{\theta J-B}$</td>
<td>8.5</td>
<td>-</td>
</tr>
</tbody>
</table>

2-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>3.2</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>145</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 ~ +100</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Sensitivity [7]</td>
<td>-</td>
<td>±10,000V HBM</td>
<td>-</td>
</tr>
</tbody>
</table>

*Notes:

[1] SSC maintains a tolerance of ±10% on flux and power measurements.
[2] Φ_V is the total luminous flux output as measured with an integrated sphere.
[3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT ±5% tester tolerance
[4] A tolerance of ±0.06V on forward voltage measurements
[5], [6] $R_{\theta J-B}$ is measured with a SSC metal core pcb. $(25 ^\circ C \leq T_J \leq 110 ^\circ C)$
 $R_{\theta J-C}$ is measured with only emitter. $(25 ^\circ C \leq T_J \leq 110 ^\circ C)$
 Break voltage of Metal PCB is 6.5kVAC
[7] It is included the zener chip to protect the product from ESD.

Caution

1. Please do not drive at rated current more than 5 sec. without proper heat sink
Characteristics for Z-Power LED

3. Natural White (S42182)

3-1 Electro-Optical characteristics at \(I_F = 350 \text{mA}, \ T_J = 25^\circ \text{C} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlated Color Temperature [3]</td>
<td>CCT</td>
<td>-</td>
<td>4000</td>
</tr>
<tr>
<td>CRI</td>
<td>(R_a)</td>
<td>-</td>
<td>93</td>
</tr>
<tr>
<td>Forward Voltage [4]</td>
<td>(V_F)</td>
<td>2.9</td>
<td>3.25</td>
</tr>
<tr>
<td>View Angle</td>
<td>-</td>
<td>2(\Theta) 1/2</td>
<td>124</td>
</tr>
<tr>
<td>Thermal resistance [5]</td>
<td>(R\theta_{J-B})</td>
<td>8.5</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance [6]</td>
<td>(R\theta_{J-C})</td>
<td>6.9</td>
<td>-</td>
</tr>
</tbody>
</table>

3-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>(I_F)</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_d)</td>
<td>3.2</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_J)</td>
<td>145</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{opr})</td>
<td>-40 ~ +85</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-40 ~ +100</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>ESD Sensitivity [8]</td>
<td>-</td>
<td>±10,000V</td>
<td>HBM</td>
</tr>
</tbody>
</table>

*Notes :

[1] SSC maintains a tolerance of ±10% on flux and power measurements.
[2] \(\Phi_V \) is the total luminous flux output as measured with an integrated sphere.
[3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT ±5%
[4] A tolerance of ±0.06V on forward voltage measurements
[5], [6] \(R\theta_{J-B} \) is measured with a SSC metal core pcb.\((25 \ ^\circ\text{C} \leq \ T_J \leq 110 \ ^\circ\text{C}) \)
\(R\theta_{J-C} \) is measured with only emitter. \((25 \ ^\circ\text{C} \leq \ T_J \leq 110 \ ^\circ\text{C}) \)
Break voltage of Metal PCB is 6.5kVAC.
[7] It is included the zener chip to protect the product from ESD.

--------------------------Caution--------------------------

1. Please do not drive at rated current more than 5 sec. without proper heat sink
Characteristics for Z-Power LED

4. Blue (B42182)

4-1 Electro-Optical characteristics at $I_F=350mA$, $T_A=25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Flux</td>
<td>Φ_V</td>
<td>-22</td>
<td>lm</td>
</tr>
<tr>
<td>Dominant Wavelength</td>
<td>λ_D</td>
<td>455-475</td>
<td>nm</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>2.9-3.25</td>
<td>V</td>
</tr>
<tr>
<td>View Angle</td>
<td>Θ</td>
<td>130</td>
<td>deg.</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R_{θ_J-B}</td>
<td>8.5</td>
<td>^o C/W</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R_{θ_J-C}</td>
<td>6.9</td>
<td>^o C/W</td>
</tr>
</tbody>
</table>

4-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>145</td>
<td>^o C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40+85</td>
<td>^o C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40+100</td>
<td>^o C</td>
</tr>
<tr>
<td>ESD Sensitivity</td>
<td>-</td>
<td>±10,000V HBM</td>
<td>-</td>
</tr>
</tbody>
</table>

*Notes:
[1] SSC maintains a tolerance of ±10% on flux and power measurements.
[2] Φ_V is the total luminous flux output as measured with an integrated sphere.
[3] Dominant wavelength is derived from the CIE 1931 Chromaticity diagram.

 A tolerance of ±0.5nm for dominant wavelength
[4] A tolerance of ±0.06V on forward voltage measurements
[5], [6] R_{θ_J-B} is measured with a SSC metal core pcb. (25 ^o C $\leq T_J$ \leq 110 ^o C)

 R_{θ_J-C} is measured with only emitter. (25 ^o C $\leq T_J$ \leq 110 ^o C)

 Break voltage of Metal PCB is 6.5kVAC
[7] It is included the zener chip to protect the product from ESD.

Caution

1. Please do not drive at rated current more than 5 sec. without proper heat sink
2. Blue power light sources represented here are IEC825 Class 2 for eye safety
Characteristics for Z-Power LED

5. Royal Blue (D42182)

5-1 Electro-Optical characteristics at $I_F=350\text{mA}$, $T_A=25\text{°C}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant Wavelength $[3]$</td>
<td>λ_D</td>
<td>455</td>
<td>457</td>
</tr>
<tr>
<td>Forward Voltage $[4]$</td>
<td>V_F</td>
<td>2.9</td>
<td>3.25</td>
</tr>
<tr>
<td>View Angle</td>
<td>2Θ 1/2</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance $[5]$</td>
<td>$R_{\theta J-B}$</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance $[6]$</td>
<td>$R_{\theta J-C}$</td>
<td>6.9</td>
<td></td>
</tr>
</tbody>
</table>

5-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>145</td>
<td>$^\circ$C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 \sim +85</td>
<td>$^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 \sim +100</td>
<td>$^\circ$C</td>
</tr>
<tr>
<td>ESD Sensitivity $[7]$</td>
<td>-</td>
<td>$\pm10,000$V HBM</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

[1] SSC maintains a tolerance of ±10% on flux and power measurements.
[2] Φ_V is the total luminous flux output as measured with an integrated sphere.
[3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT ±5% tester tolerance
[4] A tolerance of ±0.06V on forward voltage measurements
[5], [6] $R_{\theta J-B}$ is measured with a SSC metal core pcb.$(25 \text{ °C} \leq T_J \leq 110 \text{ °C})$

$R_{\theta J-C}$ is measured with only emitter. $(25 \text{ °C} \leq T_J \leq 110 \text{ °C})$

Break voltage of Metal PCB is 6.5kVAC

[7] It is included the zener chip to protect the product from ESD.

--------------------Caution--------------------

1. Please do not drive at rated current more than 5 sec. without proper heat sink
2. Blue power light sources represented here are IEC825 Class 2 for eye safety
Characteristics for Z-Power LED

6. Green (G42182)

6-1 Electro-Optical characteristics at \(I_F=350\,\text{mA}, \, T_A=25\,\degree\text{C} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Luminous Flux</td>
<td>(\Phi_V)</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Dominant Wavelength (nm)</td>
<td>(\lambda_D)</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>(V_F)</td>
<td>2.9</td>
<td>3.25</td>
</tr>
<tr>
<td>View Angle</td>
<td>(2\theta , 1/2)</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance (R_{J-B})</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance (R_{J-C})</td>
<td></td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

6-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>(I_F)</td>
<td>1000</td>
<td>\text{mA}</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_d)</td>
<td>4</td>
<td>\text{W}</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_j)</td>
<td>145</td>
<td>\degree\text{C}</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{opr})</td>
<td>-40 to +85</td>
<td>\degree\text{C}</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-40 to +100</td>
<td>\degree\text{C}</td>
</tr>
<tr>
<td>ESD Sensitivity ([7])</td>
<td></td>
<td>+/-10,000V HBM</td>
<td>-</td>
</tr>
</tbody>
</table>

*Notes :
[1] SSC maintains a tolerance of \(\pm 10\% \) on flux and power measurements.
[2] \(\Phi_V \) is the total luminous flux output as measured with an integrated sphere.
[3] Dominant wavelength is derived from the CIE 1931 Chromaticity diagram.
A tolerance of \(\pm 0.5\,\text{nm} \) for dominant wavelength
[4] A tolerance of \(\pm 0.06\,\text{V} \) on forward voltage measurements
[5], [6] \(R_{J-B} \) is measured with a SSC metal core pcb. (25 \degree\text{C} \leq T_j \leq 110 \degree\text{C})
\(R_{J-C} \) is measured with only emitter. (25 \degree\text{C} \leq T_j \leq 110 \degree\text{C})
Break voltage of Metal PCB is 6.5kVAC
[7] It is included the zener chip to protect the product from ESD.

--Caution--

1. Please do not drive at rated current more than 5 sec. without proper heat sink
Characteristics for Z-Power LED

7. Red (R42182)

7-1 Electro-Optical characteristics at $I_F=350\,mA$, $T_A=25\,^\circ\mathrm{C}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Flux $^{[1]}$</td>
<td>$\Phi_V^{[2]}$</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>Dominant Wavelength$^{[3]}$</td>
<td>λ_D</td>
<td>618</td>
<td>625</td>
</tr>
<tr>
<td>Forward Voltage $^{[4]}$</td>
<td>V_F</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>View Angle</td>
<td>$2\theta_{1/2}$</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance $^{[5]}$</td>
<td>$R_{\theta J-B}$</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance $^{[6]}$</td>
<td>$R_{\theta J-C}$</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>

7-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>2.4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>145</td>
<td>$^\circ\mathrm{C}$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 \sim +85</td>
<td>$^\circ\mathrm{C}$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 \sim +100</td>
<td>$^\circ\mathrm{C}$</td>
</tr>
<tr>
<td>ESD Sensitivity $^{[7]}$</td>
<td>-</td>
<td>$\pm10,000,\text{V HBM}$</td>
<td>-</td>
</tr>
</tbody>
</table>

*Notes:

1. SSC maintains a tolerance of $\pm10\%$ on flux and power measurements.
2. Φ_V is the total luminous flux output as measured with an integrated sphere.
3. Dominant wavelength is derived from the CIE 1931 Chromaticity diagram. A tolerance of $\pm0.5\,$nm for dominant wavelength.
4. A tolerance of $\pm0.06\,$V on forward voltage measurements.
5. $R_{\theta J-B}$ is measured with a SSC metal core pcb. ($25\,^\circ\mathrm{C} \leq T_J \leq 110\,^\circ\mathrm{C}$)
6. $R_{\theta J-C}$ is measured with only emitter. ($25\,^\circ\mathrm{C} \leq T_J \leq 110\,^\circ\mathrm{C}$)
7. Break voltage of Metal PCB is 6.5kVAC
8. It is included the zener chip to protect the product from ESD.

Caution

1. Please do not drive at rated current more than 5 sec. without proper heat sink
Characteristics for Z-Power LED

8. Amber (A42182)

8-1 Electro-Optical characteristics at $I_F=350mA$, $T_A=25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant Wavelength [3]</td>
<td>λ_D</td>
<td>585 590 595</td>
<td>nm</td>
</tr>
<tr>
<td>Forward Voltage [4]</td>
<td>V_F</td>
<td>2.0 2.3 3.0</td>
<td>V</td>
</tr>
<tr>
<td>View Angle</td>
<td>$\theta_{1/2}$</td>
<td>130</td>
<td>deg.</td>
</tr>
<tr>
<td>Thermal resistance [5]</td>
<td>$R_{\theta J-B}$</td>
<td>9</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal resistance [6]</td>
<td>$R_{\theta J-C}$</td>
<td>7.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

8-2 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_d</td>
<td>2.4</td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_j</td>
<td>145</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 ~ +100</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Sensitivity [7]</td>
<td>-</td>
<td>±10,000V</td>
<td>HBM</td>
</tr>
</tbody>
</table>

Notes:

- [1] SSC maintains a tolerance of ±10% on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrated sphere.
- [3] Dominant wavelength is derived from the CIE 1931 Chromaticity diagram. A tolerance of ±0.5nm for dominant wavelength.
- [4] A tolerance of ±0.06V on forward voltage measurements.
- [5], [6] $R_{\theta J-B}$ is measured with a SSC metal core pcb. (25°C ≤ T_J ≤ 110 °C).
 $R_{\theta J-C}$ is measured with only emitter. (25°C ≤ T_J ≤ 110 °C).
 Break voltage of Metal PCB is 6.5kVAC.
- [7] It is included the zener chip to protect the product from ESD.

Caution

1. Please do not drive at rated current more than 5 sec. without proper heat sink.
Color Spectrum, $T_A=25^\circ C$

1. Pure White

![Relative Spectral Power Distribution for Pure White](image)

2. Warm White

![Relative Spectral Power Distribution for Warm White](image)
3. Natural White

4. Red, Amber, Green, Blue (Royal Blue)
Junction Temperature Characteristics

1. Relative Light Output vs. Junction Temperature at $I_F=350\,mA$

![Graph showing relative light output vs. junction temperature for different colors.](image-url)
Junction Temperature Characteristics

2. Forward Voltage Shift vs. Junction Temperature at $I_F=350\text{mA}$

3. Wavelength Shift vs. Junction Temperature at $I_F=350\text{mA}$
Forward Current Characteristics

1. Forward Voltage vs. Forward Current, $T_A = 25 \, ^\circ\text{C}$

![Graph showing Forward Voltage vs. Forward Current for different LED colors.]

- Blue (Royal Blue), Green, Pure White
- Warm White, Natural White

![Graph showing Forward Voltage vs. Forward Current for Red and Amber LEDs.]

- Red, Amber
Forward Current Characteristics

2. Forward Current vs. Normalized Relative Luminous Flux, $T_A=25\,^\circ C$

![Graph showing Forward Current vs. Normalized Relative Luminous Flux](image)

- Blue (Royal Blue), Green, Pure White
- Warm White, Natural White

- Red, Amber

![Graph showing Forward Current vs. Normalized Relative Luminous Flux](image)
Forward Current Characteristics

3. Forward Current vs Wavelength Shift, $T_A = 25 \, ^\circ C$
1-1. Pure White, Warm White, Natural White, Green, Blue (Royal Blue)
\(T_{\text{MAX}} = 145 \, ^\circ\text{C}, @350\text{mA} \)

1-2. Pure White, Warm White, Natural White, Green, Blue (Royal Blue)
\(T_{\text{MAX}} = 145 \, ^\circ\text{C}, @700\text{mA} \)
Ambient Temperature vs Allowable Forward Current

1-3. Pure White, Green, Blue(Royal Blue)
\((T_{\text{MAX}} = 90 ^\circ \text{C}, \text{at } 1000 \text{mA})\)
Ambient Temperature vs Allowable Forward Current

1-4. Red, Amber \((T_{\text{JMAX}} = 145 \, ^\circ\text{C}, \text{at } 350\text{mA}) \)

![Graph of Ambient Temperature vs Allowable Forward Current for Red, Amber LEDs at 350mA.](image)

1-5. Red, Amber
\((T_{\text{JMAX}} = 145 \, ^\circ\text{C}, @700\text{mA}) \)

![Graph of Ambient Temperature vs Allowable Forward Current for Red, Amber LEDs at 700mA.](image)
Typical Dome Type Radiation pattern

1. Pure White

2. Warm White, Natural White
Typical Dome Type Radiation pattern

3. Blue (Royal Blue), Green

4. Red, Amber
Recommended Solder pad

1. Solder pad

![3 solder point](image1)

![Thermal enhanced PCB](image2)

![Copper](image3)

2. Solder paste pattern

![Solder paste](image4)

Note:
1. All dimensions are in millimeters (tolerance: ±0.2)
2. Scale: none

The appearance and specifications of the product may be changed for improvement without notice.
3. Reflow Soldering Conditions / Profile

4. Hand Soldering conditions
 - Lead: Not more than 3 seconds @MAX280°C
 - Slug: Use a thermal-adhesives

* Caution
1. Reflow soldering should not be done more than one time.
2. Repairing should not be done after the LEDs have been soldered.
 When repairing is unavoidable, suitable tools have to be used.
3. Die slug is to be soldered.
4. When soldering, do not put stress on the LEDs during heating.
5. After soldering, do not warp the circuit board.
6. Recommend to use a convection type reflow machine with 7 ~ 8 zones.
PCB Type Reel Packaging

Note:
1. The number of loaded products in the reel is 200ea
2. All dimensions are in millimeters (tolerance: ±0.2)
3. Scale none
*The appearance and specifications of the product may be changed for improvement without notice.
Packaging Structure

Aluminum Vinyl Bag

Note:
1. 6~10 reels are loaded in box
2. Scale none
3. For more information about binning and labeling, refer to the Application Note - 1
precaution for use

• Storage
 To avoid the moisture penetration, we recommend storing Z Power LEDs in a dry box
 (or desiccator) with a desiccant. The recommended storage conditions are Temperature 5 to 30
 degrees Centigrade. Humidity 50% maximum.

• Precaution after opening packaging
 However LED is correspond SMD, when LED be soldered dip, interfacial separation may affect
 the light transmission efficiency, causing the light intensity to drop.
 Attention in followed.
 a. Soldering should be done right after opening the package(within 24Hrs).
 b. Keeping of a fraction
 - Sealing
 - Temperature : 5 ~ 40℃ Humidity : less than 30%
 c. If the package has been opened more than 1week or the color of desiccant changes,
 components should be dried for 10-12hr at 60±5℃

• Any mechanical force or any excess vibration shall not be accepted to apply during cooling
 process to normal temp. after soldering.

• Please avoid rapid cooling after soldering.

• Components should not be mounted on warped direction of PCB.

• Anti radioactive ray design is not considered for the products listed here in.

• Gallium arsenide is used in some of the products listed in this publication. These products are
 dangerous if they are burned or shredded in the process of disposal. It is also dangerous to
 drink the liquid or inhale the gas generated by such products when chemically disposed.

• This device should not be used in any type of fluid such as water, oil, organic solvent and etc.
 When washing is required, IPA(Isopropyl Alcohol) should be used.

• When the LEDs are illuminating, operating current should be decided after considering the
 package maximum temperature.

• LEDs must be stored to maintain a clean atmosphere. If the LEDs are stored for 3 months or
 more after being shipped from SSC, a sealed container with a nitrogen atmosphere should be used
 for storage.

• The appearance and specifications of the product may be modified for improvement without
 notice.

• Long time exposure of sunlight or occasional UV exposure will cause lens discoloration.

• The slug is connected to the anode. Therefore, we recommend to isolate the heat sink.

• Attaching LEDs, don’t use adhesives to generate organic vapor.
Handling of Silicone resin LEDs

Z-Power LED is encapsulated by silicone resin for the highest flux efficiency.

Notes for handling of Silicone resin Z-Power LEDs

• Avoid touching silicone resin parts especially by sharp tools such as Pincette(Tweezers)
• Avoid leaving fingerprints on silicone resin parts.
• Dust sensitivity silicone resin need containers having cover for storage.
• When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevent.
• Please do not force over 2000 gf impact or pressure diagonally on the silicon lens. It will cause fatal damage of this product
• Please do not recommend to cover the silicone resin of the LEDs with other resin (epoxy, urethane, etc)
Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this product with acid or sulfur material in sealed space.